

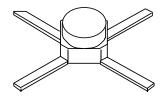
# 2 – 6 GHz Cascadable GaAs MMIC Amplifier

# **Technical Data**

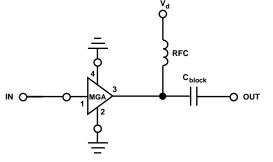
### MGA-64135

#### Features

- Cascadable 50  $\Omega$  Gain Block
- Broadband Performance: 2-6 GHz 12.0 dB Typical Gain
  - $\pm$  0.8 dB Gain Flatness 12.0 dBm P<sub>1 dB</sub>
- Single Supply Bias
- Cost Effective Ceramic Microstrip Package


#### Description

The MGA-64135 is a high performance gallium arsenide Monolithic Microwave Integrated Circuit (MMIC) housed in a cost effective, microstrip package. This device is designed for use as a general purpose 50 ohm gain block in the 2 to 6 GHz frequency range. Typical applications include narrow and broadband IF and RF amplifiers for commercial, industrial, and military requirements.


This MMIC is a cascade of two stages, each utilizing shunt feedback to establish a broadband impedance match. The source of each stage is AC grounded to allow biasing from a single positive power supply. The interstage blocking capacitor as well as a resistive "self-bias" network are included on chip.

The die is fabricated using HP's nominal .5 micron recessed Schottky-barrier-gate, gold metallization and silicon nitride passivation to achieve excellent performance, uniformity, and reliability.

### **35 Micro-X Package**



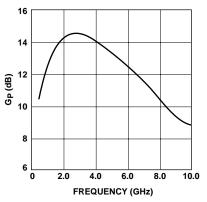
# Typical Biasing Configuration

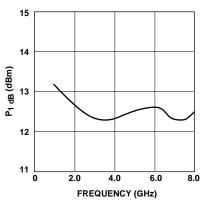


| Symbol            | Parameter                              | Units | Absolute<br>Maximum <sup>[1]</sup> |
|-------------------|----------------------------------------|-------|------------------------------------|
| V <sub>d</sub>    | Device Voltage                         | V     | 12                                 |
| P <sub>diss</sub> | Total Power Dissipation <sup>[2]</sup> | mW    | 650                                |
| P <sub>in</sub>   | CW RF Input Power                      | dBm   | +13                                |
| T <sub>ch</sub>   | Channel Temperature                    | °C    | 175                                |
| T <sub>STG</sub>  | Storage Temperature <sup>[3]</sup>     | °C    | -65 to 175                         |

## MGA-64135 Absolute Maximum Ratings

| Thermal Resistance:         | $\theta_{jc} = 150^{\circ}C/W^{[4]}; T_{CH} = 150^{\circ}C$ |
|-----------------------------|-------------------------------------------------------------|
| Liquid Crystal Measurement: | 1 μm Spot Size <sup>[5]</sup>                               |


#### Notes:


- 1. Operation of this device above any one of these parameters may cause permanent damage.
- 2. Derate linearly at 8.3 mW/°C for  $T_{\rm CASE} > 103^\circ \rm C.$
- 3. Storage above +150°C may tarnish the leads of this package making it difficult to solder into a circuit. After a device has been soldered into a circuit, it may be safely stored up to 175°C.
- 4. The thermal resistance value is based on measurements taken with the device soldered to a 25 mil Teflon PCB.
- 5. The small spot size of this technique results in a higher, though more accurate determination of  $\theta_{jc}$  than do alternate methods. See MEASURE-MENTS section for more information.

# MGA-64135 Electrical Specifications, $T_A = 25^{\circ}C$

| Symbol            | Parameters and Test Conditions: $V_d$                                         | Units          | Min. | Тур. | Max.   |       |
|-------------------|-------------------------------------------------------------------------------|----------------|------|------|--------|-------|
| GP                | Power Gain $( S_{21} ^2)$                                                     | f = 2 to 6 GHz | dB   | 10.0 | 12.0   |       |
| $\Delta G_P$      | Gain Flatness                                                                 | f = 2 to 6 GHz | dB   |      | ± 1.20 |       |
| —                 | Gain Variation vs. Temperature<br>$T_{CASE} = -25^{\circ}C$ to $+85^{\circ}C$ | f = 2 to 6 GHz | dB   |      | ±0.5   |       |
| VSWR              | Input VSWR                                                                    | f = 2 to 6 GHz |      |      | 1.5:1  | 2.0:1 |
| VSWK              | Output VSWR                                                                   | f = 2 to 6 GHz |      |      | 1.4:1  | 2.0:1 |
| P <sub>1 dB</sub> | Output Power at 1 dB Gain Compression                                         | f = 2 to 6 GHz | dBm  | 10.0 | 12.0   |       |
| NF                | $50 \Omega$ Noise Figure                                                      | f = 2 to 6 GHz | dB   |      | 7.5    |       |
| —                 | Reverse Isolation ( $ S_{21} ^2$ )                                            | f = 2 to 6 GHz | dB   |      | 35     |       |
| Id                | Device Current                                                                |                | mA   | 35   | 50     | 65    |

# **MGA-64135 Typical Performance**, $T_A = 25^{\circ}C$





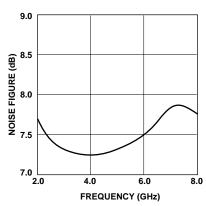



Figure 1. Power Gain vs. Frequency,  $V_d=10\ V.$ 

Figure 2. Output Power @ 1 dB Gain Compression vs. Frequency,  $V_d = 10 V$ .

Figure 3. Noise Figure vs. Frequency,  $V_d=10\ V.$ 

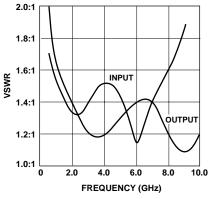
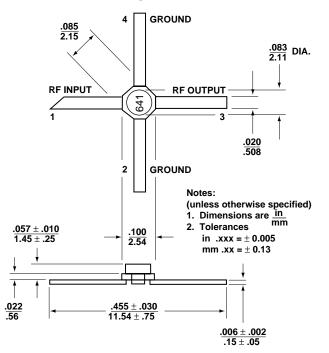




Figure 4. VSWR vs. Frequency, V<sub>d</sub> = 10 V.

| Freq. | <b>S</b> <sub>11</sub> |      | $S_{21}$ |      | $\mathbf{S}_{12}$ |       |      | $\mathbf{S}_{22}$ |     |     |
|-------|------------------------|------|----------|------|-------------------|-------|------|-------------------|-----|-----|
| GHz   | Mag                    | Ang  | dB       | Mag  | Ang               | dB    | Mag  | Ang               | Mag | Ang |
| 0.5   | .27                    | -38  | 10.6     | 3.38 | 174               | -31.0 | .028 | -13               | .38 | -41 |
| 1.0   | .18                    | -44  | 12.9     | 4.42 | -9                | -33.1 | .022 | -20               | .26 | -48 |
| 2.0   | .14                    | -67  | 14.3     | 5.21 | -54               | -34.9 | .018 | -19               | .16 | -59 |
| 3.0   | .17                    | -91  | 14.5     | 5.33 | -93               | -37.1 | .014 | -21               | .11 | -75 |
| 4.0   | .20                    | -105 | 14.2     | 5.11 | -131              | -37.8 | .013 | -15               | .11 | -71 |
| 5.0   | .18                    | -114 | 13.6     | 4.79 | -167              | -37.3 | .014 | -10               | .14 | -57 |
| 6.0   | .07                    | -162 | 12.8     | 4.35 | 157               | -38.5 | .012 | -1                | .17 | -41 |
| 7.0   | .15                    | 96   | 11.8     | 3.89 | 123               | -36.0 | .016 | 3                 | .16 | -42 |
| 8.0   | .23                    | 76   | 10.8     | 3.46 | 92                | -34.3 | .019 | 4                 | .10 | -54 |
| 9.0   | .32                    | 63   | 9.5      | 2.98 | 63                | -29.3 | .034 | 12                | .04 | 159 |
| 10.0  | .43                    | 52   | 8.6      | 2.68 | 38                | -27.6 | .041 | -11               | .09 | 116 |

MGA-64135 Typical Scattering Parameters (Z\_0 = 50  $\Omega,$  T\_A = 25 °C, V\_d = 10 V)



## **35 Micro-X Package Dimensions**